Page images
PDF
EPUB

First, some provisions raise complex implementation issues. At issue here is the treatment of so-called sinks-activities that affect the rate at which carbon is removed from the atmosphere and "sequestered," e.g., by the planting of trees.

Second, the details of a number of items-primarily concerning international trading, the Clean Development Mechanism, and developing countries—are the subject of further discussions including future negotiations in Buenos Aires next fall, because they had not been definitively settled by the end of the Kyoto talks.

Finally, and most importantly, we have not yet negotiated international agreements to limit emissions beyond the 2012 window. The emission cuts agreed upon at Kyoto are only a first step on a long journey. The first step that we propose to take over the next 15 years is critical. But the reason it is critical is not that, by itself, it will solve the climate change problem-emissions during any given decade are small compared to the cumulative concentrations in the atmosphere. Rather, the first step is critical because we can not take the second and third steps until we have taken the first. At the same time, any analysis is complicated by the lack of knowledge over what the subsequent steps will be.

Inherent Limitations of Models

In addition to these uncertainties about the details of the international effort to address climate change, are the inherent limitations of the models used to evaluate that effort. Even within a given model, answers depend critically on the precise nature of the question asked. For example, the costs of emissions reductions depend critically on the extent of global participation and international trading that a treaty is assumed to feature. But in addition to the dependence of the results from a given model on the precise assumptions, different models can give different answers even when all the assumptions are specified to be the same a concrete illustration of the range of uncertainty to which we must assign the predictions of any one individual model.

One area in which the uncertainty is particularly large is the pace of technological progress especially the diffusion of existing energy-efficient technologies, but also the development of new technologies-and the extent to which the pace will accelerate in response to government programs. Models and experts on climate change policy tend to have a wider range of disagreement on the scope for speeding the diffusion of existing energy-efficient technologies than on any other single issue.

Furthermore, each model has strengths and weaknesses; each has questions to which it is better or worse suited to answer. Some, for example, model the energy sector in detail. Some allow for the fact that a coal-fired power plant cannot costlessly be converted to one that runs on natural gas. Some show the effects of hypothetical tax cuts made possible by the new revenues earned through the auction of emissions permits. Some are capable of showing recessions and booms. Others include a long-term "carbon cycle" model that can keep track of the accumulation of greenhouse gas concentrations in the atmosphere and their climatological effects. Some break down the rest of the world into regions and so can model international trade. No one model does everything, and therefore we must not rely blindly on the results of any one model or set of models. Professional judgement and economic intuition, along with diplomatic assessments, are also crucial.

Benefits of Averting Climate Change

As discussed above, it is evident that the benefits of averting climate change are potentially immense. But we have chosen not to try to quantify them in monetary terms, in light of the difficulties we have enumerated. These include the uncertainty of these benefits, their timing and therefore the extreme sensitivity of the results to the chosen discount rate, and the dependence of benefits on emissions paths after the 2008 to 2012 budget period specified in Kyoto.

V. ASSESSING THE KYOTO PROTOCOL

In order to evaluate the likely net economic impact of the Kyoto Protocol, excluding the benefits of mitigating climate change itself, we have drawn upon a variety of tools to assess the various possible costs and non-climate benefits of the Administration's emissions reduction policy. To give away the punch line, our conclusion is as follows: the net costs of our policies to reduce emissions are likely to be small, assuming those reductions are undertaken in an efficient manner and we are successful in securing meaningful developing country participation as well as effective international trading, and the Clean Development Mechanism in future negotiations. That potential small net premium, even excluding the benefits of mitigating climate change, in effect, purchases a partial insurance policy against a serious environmental threat.

Because the results from any model must be treated with caution, the Administration has employed a broad set of economic tools to assess the Kyoto Protocol. We have drawn on the insights of a wide range of models of the energy sector and economy over the next 25 years, including but not limited to the results of the Stanford Energy Modeling Forum exercises, the IPCC's review of the economic and social dimensions of climate change, the work of the OECD on Economic Dimensions and Policy Responses to Global Warming, and the staff-level Interagency Analytical Team analysis produced last year. Other tools include simple relevant statistics, "meta-analyses" such as work by the World Resources Institute, models, and basic economic reasoning. Drawing on this broad array of analytical tools is crucial to an intelligent evaluation of the policy alternatives.

To our knowledge, no model-whether used inside the government or not-has yet been set up to analyze the implications of the Kyoto Protocol, since this agreement is only a few months old and remains unfinished. In particular, no model is currently designed to assess Kyoto's treatment of sinks, or all six greenhouse gases. Some model-builders outside the government tend to take as long as several years to incorporate changes in policy parameters into their models.

Our thinking has been informed, however, by simulations conducted with the Second Generation Model of Battelle Laboratories, one of the leading models in the field. The SGM is one of the models best positioned to analyze the role of international trade in emission permits, which we consider to be a critical element of the Kyoto Treaty. However, the SGM does not cover all six gases included in the Kyoto Protocol or include a role for sinks. We have used the SGM model as one input into our overall assessment of the Kyoto treaty, but have attempted to supplement its results with additional analysis to account for such special features of the agreement as the inclusion of six gases, a possible trading arrangement that could include a subset of the Annex I countries and the Clean Development Mechanism. We will share with you today some preliminary results of this analysis. To the extent possible, we have compared results obtained with the SGM model with those of other modelling efforts.

Mindful of the limitations of any single model, we are eager to see features of the Kyoto Protocol assessed by other models to obtain a better feel for the range of possible effects. This work is just beginning and much of it will continue to go on outside the government. For example, the Energy Modeling Forum, based at Stanford University, is a long-running model comparison exercise involving many of the leading climate models. EMF is currently studying how features of the Kyoto legal language can be translated into terms recognizable to economic modelers. We expect that the group will conduct a full scale analysis of the Kyoto Protocol. The Energy Modeling Forum believes that its members will need at least until mid-year to update their results.

VI. ASSESSING THE POTENTIAL COSTS OF EMISSIONS REDUCTIONS

I said in Congressional testimony last July that we can do this smart or we can do this dumb. I was referring to the point that the costs of cutting emissions can be much reduced if flexible, market-based mechanisms are used. Our economic analysis highlighted the importance of such flexible, market-based mechanisms-which are therefore reflected, at the President's insistence, in the Kyoto Protocol and our ongoing diplomatic strategy.

Within the Kyoto Protocol, this means an insistence on international trading, Joint Implementation, the Clean Development Mechanism, and, ultimately, on meaningful developing country participation. Domestically, this means that we implement any emissions reductions through a market-based system of tradeable emissions permits, which ensures that we achieve reductions wherever they are least expensive. But this also means taking serious and responsible steps in the short run to prepare us to meet our obligations in the longer term.

The first such step is the inclusion in this year's budget of an aggressive, $6.3 billion program of tax cuts and R&D investments-$1.3 billion more than the $5 billion package the President promised in his October 22 speech on this issue. The goal is both to stimulate the development of new energy-saving and carbon-saving technologies and to encourage the dissemination of those that exist already. The proposed package contains $3.6 billion over the next 5 years in tax cuts for energy efficient purchases and renewable energy, including tax credits of $3,000 to $4,000 for consumers who purchase highly fuel efficient vehicles, a 15 percent credit (up to $2,000) for purchases of rooftop solar equipment, a 20 percent credit (subject to a cap) for purchasing energy-efficient building equipment, a credit up to $2,000 for purchasing energy-efficient new homes, an extension of the wind and biomass tax credit, and a 10 percent investment credit for the purchase of combined heat and

power systems. The package also contains $2.7 billion over the next 5 years in additional research and development investments-covering the four major carbon-emitting sectors of the economy (buildings, industry, transportation, and electricity), plus carbon removal and sequestration, Federal facilities, and cross-cutting analyses and research. One example of the R&D effort is the Partnership for a New Generation of Vehicles (PNGV). PNGV is a government-industry effort to develop attractive, affordable cars that meet all applicable safety and environmental standards and get up to three times the fuel efficiency of today's cars. In FY99, the combined proposal for PNGV is $277 million, up from $227 million appropriated in FY98. Similar government-industry efforts are proposed to develop more efficient diesel engines for both light trucks and heavy trucks.

A second responsible step entails industry-by-industry consultations to prepare emission reduction plans in key industrial sectors. The Administration will work in partnership with industry to identify ways in which the Federal government might remove regulatory hurdles that discourage energy efficiency. In addition, DOE will spearhead a comprehensive effort to improve the energy efficiency of the Federal government's own operations and purchases.

The third step is the promotion of an environmentally-responsible electricity restructuring bill, which the President identified as part of his domestic climate change package in his address to the National Geographic Society on October 22. An electricity sector freed from government regulation would be a more efficient energy sector. Costs to consumers would fall. In addition, stronger incentives for improved generation efficiency in conjunction with appropriate market based provisions could achieve modest reductions in emissions. A reasonable overall estimate of the contribution of federal electricity restructuring to the rest of the President's program to address climate change is that it would make further progress to the same emission reduction goals at a cost saving of roughly $20 billion per year. These steps should be taken regardless of Kyoto, because they make sense in terms of energy efficiency. But they have the added benefit of preparing us for Kyoto. Estimated Reduction in Costs from Annex I Trading

In the language of the treaty, "Annex I," is the set of countries that have agreed to take on binding limitations in emissions of greenhouse gases. Even without meaningful developing country participation-which, again, the President has emphasized is essential before the treaty would be submitted for ratification-costs could be reduced substantially by emission trading among the Annex I countries. To provide some indication of the possible efficiency improvements, Russia and Ukraine consume six times as much energy per dollar of output as does the United States. Such large international differences in energy efficiency suggest that adoption of existing U.S. technology would yield very large emissions reductions in these

countries.

Estimates derived from the SGM model confirm that emissions trading among Annex I countries can reduce the cost to the United States of achieving its targets for 2008-2012 emissions by about half relative to a situation in which such trading was not available. This concept of costs is meant to capture aggregate resource costs to the US economy, including the cost to domestic firms of purchasing emission permits from other countries where emission reductions may be cheaper than in the United States. Although these estimates reflect idealized international trading in efficient markets, the overall conclusion is clear. The dramatic reduction in costs potentially available from Annex I trading within the SGM model—cutting the costs involved by half-highlights why the President insisted that international trading be part of the Kyoto Protocol; and why its achievement by our negotiators in Kyoto was such an important accomplishment.

Estimated reduction in costs from umbrella trading

One possibility that emerged in Kyoto, which none of us foresaw, was the idea developed there by the U.S. delegation, that the United States might undertake trading with a subset of Annex I countries, dubbed the "umbrella". Countries that have expressed interest in the umbrella include the United States, Australia, Canada, New Zealand and Russia, with strong indications of interest from some others. This subset of Annex I countries shares a common interest in promoting marketbased mechanisms, most specifically, fully flexible rules for international trading of emissions permits.

It is too early to state the precise form the umbrella will take. But we can envision a number of potential benefits. The umbrella could, for example greatly reduce costs to the U.S. Results that we have derived from various SGM simulations of efficient international trading suggest that, relative to the situation in which there is no trading at all, the umbrella can reduce costs by an estimated 60-75 percent, de

pending on whether the former Warsaw Pact countries fall within the umbrella. The Kyoto Protocol classifies these countries outside of the EU bubble for the first budget period 2008-2012.

Estimated reduction in costs from developing country participation

The next consideration is participation by developing countries. The President has said that he will not submit the treaty for ratification without meaningful participation by key developing countries. Such participation would further reduce the costs

involved.

The substantial potential gains from meaningful developing country participation are highlighted by the significant benefits that will likely accrue from the limited role that the developing countries have already agreed to: the Clean Development Mechanism (CDM), modeled after the U.S. joint implementation concept. The CDM cannot realistically be expected to yield all the gains of binding targets for developing countries, but it might shave costs by roughly another 20 to 25 percent from the reduced costs that result from trading among Annex I countries.

Another possibility is that we persuade some of the key developing countries that are the largest emitters to commit to targets, and allow us to buy emission reductions from those paths. Simulations with the SGM model suggest that full participation by non Annex I countries could cut roughly 55 percent off the reduced costs that result from Annex I trading. The actual cost reduction would depend on the extent of developing country participation that is ultimately obtained, as well as the effectiveness of international trading arrangements. The more developing countries that take on modest binding targets and trade in international permit markets, the lower will be costs.

These cost-saving opportunities are fundamental tenets of the U.S. position. The promise of Kyoto cannot be achieved without effective emissions trading. Moreover, if we do not get meaningful participation by key developing countries, we won't submit the treaty for ratification to the Senate. So, while our analysis may be predicated on some ambitious conditions concerning trading and developing country participation, it is exactly those conditions that form the foundation of the U.S. position in international negotiations including those at Buenos Aires.

Accounting for Carbon Sinks

The preceding discussion has emphasized the importance of trading arrangements and the CDM. In reaching an overall economic assessment, it is also important to factor in the potential role of carbon sinks. Again, the U.S. delegation obtained a novel concept, that carbon absorbing activities called sinks could be used to offset emissions. The arrangements concerning carbon sinks in the Kyoto Protocol have received less attention than they merit. The Kyoto Protocol specifies that removals of CO2 by sinks count toward meeting the target. The Kyoto Protocol counts the net emissions effects of three sink activities-afforestation, reforestation, and deforestation. Very preliminary estimates of the implications for the United States of the Kyoto provision on sinks indicate that carbon sinks could comprise a significant portion of the total required emissions reductions. Moreover, decreasing the required emissions reduction by, for example, 10% would likely result in cost-savings greater than 10%.

Even this estimate of the effect of sinks is conservative in one respect: it is based on an assumption for sink activity in the U.S. over the 2008-2012 period, and no assumed benefits from sinks elsewhere in the world. Very preliminary estimates suggest that incorporating the gains from sinks throughout the world can substantially reduce the costs of meeting the Kyoto target, on top of the gains from trading among Annex I countries. (Furthermore, no model has yet even tried to take into account that government policies can help increase the activities qualifying as allowable sinks, like some tree-planting.) Because the quantitative uncertainty is so large, we do not yet have an estimate with which we are comfortable. But we expect that complete modelling of the Kyoto provision pertaining to sinks will likely have favorable and potentially large effects on projected costs.

Accounting for the role of improvements in energy efficiency

Another issue in analyzing the Kyoto protocol concerns future improvements in energy efficiency due to innovation and diffusion of existing technology. The parameter that figures most prominently in analysis of energy efficiency is the rate of improvement in the so-called Autonomous Energy Efficiency Index (AEEI), that is the rate at which the total use of energy falls relative to GDP. A plausible assumption on the AEEI is an improvement of 1.0 percent per year. Reflecting a conservative interpretation of the 15-year impact of various climate change initiatives, this is only a small increase above the 0.9 percent number in the Energy Information Administration's Annual Energy Outlook. That assumption is not the most optimistic

outcome that might occur. Some authorities in the field of energy policy forecast more rapid technological progress. Experts at five national laboratories managed by the Department of Energy, using an engineering approach rather than an economic paradigm, found that a third of the emissions reductions necessary to return to 1990 levels by 2010 could be achieved through the adoption of existing energy-efficient technologies at no net resource cost, or even some savings. The National Academy of Sciences reached qualitatively similar conclusions in a 1992 report.

The President's FY 1999 budget, as I have noted, includes a $6.3 billion package of tax cuts and R&D investments intended to spur the discovery and adoption of new technologies. If the Administration is successful in this effort, the rate of improvement in energy efficiency could rise and such improvements would lower the cost of meeting our Kyoto target. For example, published results based on SGM model simulations with different assumed rates of AEEI suggest that an increase in the AEEI of 25 percent could lead to declines in the permit price of approximately 40 percent.

Our justification for incorporating into our assessment a small assumed impact of Administration technology policies is somewhat analogous to the Administration's rationale for employing mainstream economic assumptions in our budget forecasts: in the presence of uncertainty, we are conservative in our estimates of the speed with which the economy will grow, tax receipts will rise, and the budget will improve. That way, any revisions or surprises that occur are likely to be in the pleasant direction. In this instance, we prudently and conservatively assume that there will be substantial delays between investments in new technology or the diffusion of existing technology, and the returns to such investments.

Moreover, at the recent automobile show in Detroit, General Motors announced that it has developed a hybrid-based vehicle that can achieve fuel efficiency of 80 miles per gallon, and that this car could be in commercial production within a few years. Ford also exhibited a prototype of a light-weight highly fuel efficient sedan that could be in commercial production by the middle of the next decade. These announcements followed an earlier breakthrough announced by DOE and its partners of a fuel cell that could run on gasoline and double current fuel economy while reducing conventional air pollution emissions by 90 percent. These technological advances have been made possible through the efforts of the Partnership for a New Generation of Vehicles between the Administration and the U.S. auto companies and their suppliers.

Such progress may be replicated in other sectors. VCRs and TVs, while switched off, consume about $1 billion worth of electricity annually. EPA has established a partnership with major manufacturers that has a goal of achieving up to a 70 percent reduction in energy use by VCRS and TVs while they are switched off, without sacrificing product quality, usefulness, or increasing costs. This partnership offers promise of substantial improvements in energy efficiency. Non-Climate Benefits

A final factor that should be included in any comprehensive assessment of the economic implications of the Kyoto protocol are the benefits of the agreement. The literature has emphasized that any relative price shifts that prove necessary to reduce emissions should produce non-climate benefits in three areas: traffic congestion, highway accidents, and air pollution unrelated to climate change. These benefits are hard to quantify precisely but are potentially significant: our rough estimates suggest that these three benefits could offset approximately a quarter of the resource cost of the climate change policy.

Synthesis

A comprehensive evaluation of the economic impact of the Kyoto Protocol must integrate all of the factors described above: reliance on flexible market-based mechanisms domestically; international trading and Joint Implementation among Annex I countries; the Clean Development Mechanism; meaningful developing country participation; the potential cost-mitigating role of including six gases and carbon sinks; the benefits of electricity restructuring; and emissions reductions achieved as a consequence of other proposed Administration climate change initiatives. Assuming that effective mechanisms for international trading, Joint Implementation and the Clean Development Mechanism are established, and assuming also that the U.S. achieves meaningful developing country participation, our overall assessment is that the economic cost to the United States in aggregate and to typical households of attaining the targets and timetables specified in the Kyoto Protocol, will be modest. This conclusion that the impact will be modest is not entirely dependent upon, but is fully consistent with, formal model results. I have previously emphasized the limitations of relying on any single model in assessing the economic impact of the

« PreviousContinue »