Interactions of High Energy Particles with NucleiNational Bureau of Standards, 1975 - 69 pages |
From inside the book
Results 1-5 of 8
Page 20
... wave function of the nucleus : 1- exp ( ix . ( b ) ) = ( ix . ( b ) ) = √ ď381 · ... A A · ĤI P ( ) { 1– ĤI ( 1 − x ( b − s ) } , ď23⁄4 ̧ II p ( s ; ) j = 1 y - exp [ ix . ( b ) ] - ( 1 - disp ( s ) ( b- ) ) A [ Y j = 1 large A exp ...
... wave function of the nucleus : 1- exp ( ix . ( b ) ) = ( ix . ( b ) ) = √ ď381 · ... A A · ĤI P ( ) { 1– ĤI ( 1 − x ( b − s ) } , ď23⁄4 ̧ II p ( s ; ) j = 1 y - exp [ ix . ( b ) ] - ( 1 - disp ( s ) ( b- ) ) A [ Y j = 1 large A exp ...
Page 22
... wave function ? Not very important . The most important are general characteristics : density distributions ( hence possible deformations ) but not internal correlations . From the published analyses of hadron - nucleus scattering ( see ...
... wave function ? Not very important . The most important are general characteristics : density distributions ( hence possible deformations ) but not internal correlations . From the published analyses of hadron - nucleus scattering ( see ...
Page 23
... wave functions of the relative motion , ø ( r ) . + R IN T H2 SH For example , the elastic scattering amplitude is M ( A ) = ik 2π : / db exp ( i △ · b ) [ ď3r | ¢ ( r ) | 2 [ v , ( b − 1⁄28 ) + Yn ( b + 1⁄2s ) ... wave function 23.
... wave functions of the relative motion , ø ( r ) . + R IN T H2 SH For example , the elastic scattering amplitude is M ( A ) = ik 2π : / db exp ( i △ · b ) [ ď3r | ¢ ( r ) | 2 [ v , ( b − 1⁄28 ) + Yn ( b + 1⁄2s ) ... wave function 23.
Page 24
Wiesław Czyż. Hence if we can factor out the c.m. wave function from the product = II ; ; ( r ; ) we can stick to ... wave functions ( this is partly the reason why they are so popular ! ) . There R ( r ) = ( A / T3R6 ) 1/4 exp ...
Wiesław Czyż. Hence if we can factor out the c.m. wave function from the product = II ; ; ( r ; ) we can stick to ... wave functions ( this is partly the reason why they are so popular ! ) . There R ( r ) = ( A / T3R6 ) 1/4 exp ...
Page 26
... wave function is : Om ( r ) = ( 4π ) −1 / 2p − 1 [ u ( r ) + 8−1 / 2 S12W ( r ) ] x1 , m where u ( r ) and w ( r ) are the radial S and D functions and Sız = [ 3 ( ơi • r ) ( • r ) −ơi • ] . ( 3.10 ) d1 , d2 are the Pauli spin ...
... wave function is : Om ( r ) = ( 4π ) −1 / 2p − 1 [ u ( r ) + 8−1 / 2 S12W ( r ) ] x1 , m where u ( r ) and w ( r ) are the radial S and D functions and Sız = [ 3 ( ơi • r ) ( • r ) −ơi • ] . ( 3.10 ) d1 , d2 are the Pauli spin ...
Common terms and phrases
absorption additivity of phase anomalous magnetic moment ú approximately assume attenuation beam Bureau of Standards coherent diffractive production collision Compton scattering compute Coulomb interactions Czyż d³r db bJo db exp i▲·b deuteron diagonalization diffractive production processes diffractive scattering discussed double scattering elastic scattering amplitude electromagnetic equation example excited experiments factor Feynman diagrams formula four-momentum Glauber model hadrons Hence high energy limit incident particle incident wave inelastic shadowing Interactions of High invariant mass K mesons multiple scattering National Bureau neutrino neutrons ññ Note nuclear matter nuclear targets nuclei nucleon obtained optical theorem parameters phase shifts photon photoproduction of vector physical pion production amplitude profiles quantum numbers regeneration Řº shadowing effects single scattering spin strongly interacting target nucleus total cross section vector meson VMD model wave function Απ γν ΦΩ