Interactions of High Energy Particles with NucleiNational Bureau of Standards, 1975 - 69 pages |
From inside the book
Results 1-5 of 8
Page 20
... wave function of the nucleus : 1— exp ( îx . ( b ) ) = ƒ d . ...... .d23⁄4 , A Îμœ ‚ ) { 1– ÎÌ ( 1 − x ( b − s ) } , ( 8 ; ) ர் j = 1 Y p ( s ; ) j = 1 A d2 exp [ ix . ( b ) ] = ( 1 − f ( ' sp ( s ) ( b − s ) ^ —— exp [ −4 ...
... wave function of the nucleus : 1— exp ( îx . ( b ) ) = ƒ d . ...... .d23⁄4 , A Îμœ ‚ ) { 1– ÎÌ ( 1 − x ( b − s ) } , ( 8 ; ) ர் j = 1 Y p ( s ; ) j = 1 A d2 exp [ ix . ( b ) ] = ( 1 − f ( ' sp ( s ) ( b − s ) ^ —— exp [ −4 ...
Page 22
... wave function ? Not very important . The most important are general characteristics : density distributions ( hence possible deformations ) but not internal correlations . From the published analyses of hadron - nucleus scattering ( see ...
... wave function ? Not very important . The most important are general characteristics : density distributions ( hence possible deformations ) but not internal correlations . From the published analyses of hadron - nucleus scattering ( see ...
Page 23
... wave functions of the relative motion , ø ( r ) . + R For example , the elastic scattering amplitude is M ( A ) = ik 2π db exp ( i △ · b ) ƒ d3r | ø ( r ) l2 [ v , ( b − 1⁄2s ) + Yn ( b + 1⁄2s ) - Yр ( b − 1⁄2s ) Yn ... wave function 23.
... wave functions of the relative motion , ø ( r ) . + R For example , the elastic scattering amplitude is M ( A ) = ik 2π db exp ( i △ · b ) ƒ d3r | ø ( r ) l2 [ v , ( b − 1⁄2s ) + Yn ( b + 1⁄2s ) - Yр ( b − 1⁄2s ) Yn ... wave function 23.
Page 24
Wiesław Czyż. Hence if we can factor out the c.m. wave function from the product = II ; ; ( r ; ) we can stick to ... wave functions ( this is partly the reason why they are so popular ! ) . There ® ( r ) = ( A / π3R6 ) 1/4 exp ( − Ar2 ...
Wiesław Czyż. Hence if we can factor out the c.m. wave function from the product = II ; ; ( r ; ) we can stick to ... wave functions ( this is partly the reason why they are so popular ! ) . There ® ( r ) = ( A / π3R6 ) 1/4 exp ( − Ar2 ...
Page 26
... wave function is : Pm ( r ) = ( 4π ) -1 / 2-1 [ u ( r ) + 8-1 / 2 S12W ( r ) Jx1.m where u ( r ) and w ( r ) are the radial S and D functions and Sız = [ 3 ( ơi • r ) ( • r ) −ơi • ] . ( 3.10 ) d1 , d2 are the Pauli spin operators ...
... wave function is : Pm ( r ) = ( 4π ) -1 / 2-1 [ u ( r ) + 8-1 / 2 S12W ( r ) Jx1.m where u ( r ) and w ( r ) are the radial S and D functions and Sız = [ 3 ( ơi • r ) ( • r ) −ơi • ] . ( 3.10 ) d1 , d2 are the Pauli spin operators ...
Common terms and phrases
absorption additivity analysis approximately assume attenuation beam coherent collision complete components compute consider contribution corrections Coulomb Coulomb interactions coupling cross section db exp db exp i▲·b depend describe deuteron diffractive production processes discussed effects elastic scattering elastic scattering amplitude equation example excited existence experimental experiments expression fact factor field final formula forward given gives Glauber ground hadrons Hence high energy limit important incident particle inelastic initial Institute interactions introduce magnetic mass measurement momentum transfer multiple scattering Note nuclear nuclear targets nuclei nucleon numbers objects obtained parameters phase shifts photon photoproduction physical position possible problem profiles regeneration shadowing single Standards step strong structure technical vector meson wave function weak