Interactions of High Energy Particles with Nuclei |
From inside the book
Results 1-5 of 22
Page 2
... is shifted to the position of the jth nucleon : f ; ( 8 ) = ik 11⁄2 / db exp ( i △ · b ) { 1— exp [ ix ; ( b − s ; ) ] } , where k is the momentum of the incident particle in laboratory frame A is the two - dimensional momentum ...
... is shifted to the position of the jth nucleon : f ; ( 8 ) = ik 11⁄2 / db exp ( i △ · b ) { 1— exp [ ix ; ( b − s ; ) ] } , where k is the momentum of the incident particle in laboratory frame A is the two - dimensional momentum ...
Page 3
... the nucleons are ' frozen ' at certain positions , we get for the amplitude Mfi = ik 27 / d3rı dr ... ray , * ( r ... ra ) | bexp ( iA + b ) × { 1 - exp [ Σx ; ( b − j ; ) ] } ¥ , ( r1 . . . r △ ) ik = 27 db exp ( iA.b ) d [ dr .
... the nucleons are ' frozen ' at certain positions , we get for the amplitude Mfi = ik 27 / d3rı dr ... ray , * ( r ... ra ) | bexp ( iA + b ) × { 1 - exp [ Σx ; ( b − j ; ) ] } ¥ , ( r1 . . . r △ ) ik = 27 db exp ( iA.b ) d [ dr .
Page 4
The amplitude for the particle to scatter from k to k ' is : M ( k ' , k ) = - ≈ m 2π m 2π d3r exp ( -ik ' • r ) V ( r ) ( r ) 81 dzeik V ( b , z ) exp exp ( − : S_dzV ( b , 2 ' ) ) d2b exp ( iA.b ) [ ** ik = 1 db exp ( ia - b ) [ 1- ...
The amplitude for the particle to scatter from k to k ' is : M ( k ' , k ) = - ≈ m 2π m 2π d3r exp ( -ik ' • r ) V ( r ) ( r ) 81 dzeik V ( b , z ) exp exp ( − : S_dzV ( b , 2 ' ) ) d2b exp ( iA.b ) [ ** ik = 1 db exp ( ia - b ) [ 1- ...
Page 6
As M ( k ' , k ) == m ↓ = u ( k ) exp ( ikz - ie [ ' _ dz'V ( b , 2 ' ) ) , 22 [ d3rī svoеV ( b , 2 ) , where = u ( k ' ) exp ( iEz + iA . b ) , we get m f · .00 z ) 91x ( k ' , k ) = " " , û ( k ' ) rou ( k ) i ƒ db exp ( i △ -b ) ...
As M ( k ' , k ) == m ↓ = u ( k ) exp ( ikz - ie [ ' _ dz'V ( b , 2 ' ) ) , 22 [ d3rī svoеV ( b , 2 ) , where = u ( k ' ) exp ( iEz + iA . b ) , we get m f · .00 z ) 91x ( k ' , k ) = " " , û ( k ' ) rou ( k ) i ƒ db exp ( i △ -b ) ...
Page 8
In the case when only one Coulomb potential is present ( hence B = 0 , but E0 ) , we have M ( A ) ~ ix , + + { S db exp ( ia - b ) [ 1– exp ( -ie [ ** dz V ( b , z ) + i + if ** dza ( b , z ) > ) } } Xi , where 0 , -i ( x - iy ) V ' ( r ) ...
In the case when only one Coulomb potential is present ( hence B = 0 , but E0 ) , we have M ( A ) ~ ix , + + { S db exp ( ia - b ) [ 1– exp ( -ie [ ** dz V ( b , z ) + i + if ** dza ( b , z ) > ) } } Xi , where 0 , -i ( x - iy ) V ' ( r ) ...
What people are saying - Write a review
We haven't found any reviews in the usual places.
Common terms and phrases
absorption additivity analysis approximately assume attenuation beam coherent collision complete components compute consider contribution corrections Coulomb Coulomb interactions coupling cross section db exp db exp i▲·b depend describe deuteron diffractive production processes discussed effects elastic scattering elastic scattering amplitude equation example excited existence experimental experiments expression fact factor field final formula forward given gives Glauber ground hadrons Hence high energy limit important incident particle inelastic initial Institute interactions introduce magnetic mass measurement momentum transfer multiple scattering Note nuclear nuclear targets nuclei nucleon numbers objects obtained parameters phase shifts photon photoproduction physical position possible problem profiles regeneration shadowing single Standards step strong structure technical vector meson wave function weak