Interactions of High Energy Particles with NucleiNational Bureau of Standards, 1975 - 69 pages |
From inside the book
Results 1-5 of 29
Page 2
... db exp ( i △ · b ) ( 1 — eixi ( b ) ) , is shifted to the position of the jth nucleon : f ; ( 8 ) = ik 2π :) d2b exp ( i △ b ) { 1— exp [ ix ; ( b - s ; ) ] } , where k is the momentum of the incident particle in laboratory frame A is ...
... db exp ( i △ · b ) ( 1 — eixi ( b ) ) , is shifted to the position of the jth nucleon : f ; ( 8 ) = ik 2π :) d2b exp ( i △ b ) { 1— exp [ ix ; ( b - s ; ) ] } , where k is the momentum of the incident particle in laboratory frame A is ...
Page 3
... db exp ( i △ .b ) × { 1− exp [ Σx ; ( b − j ; ) ] } Y , ( r1 . . . гa ) ik = - / db exp ( i △ · b ) [ dr .... drav , • [ 1– ÎI ( 1 — v ‚ ( b − s » ) ) ] ¥ . * - Yi , j = 1 ( 2.1 ) 2π where Y , and Y , are the initial and final wave ...
... db exp ( i △ .b ) × { 1− exp [ Σx ; ( b − j ; ) ] } Y , ( r1 . . . гa ) ik = - / db exp ( i △ · b ) [ dr .... drav , • [ 1– ÎI ( 1 — v ‚ ( b − s » ) ) ] ¥ . * - Yi , j = 1 ( 2.1 ) 2π where Y , and Y , are the initial and final wave ...
Page 4
... db exp ( i △ • b ) [ ** dze11V ( b , z ) exp xp ( − ¦ S'_ daV ( b , a ' ) ) / ďb 00 ** dz ' ∞ = 2 db exp ( i △ -b ) [ 1– exp ( − ¦ ƒ ̄ ̄ de V ( b , 2 ' ) ) ] ; A = k - k ' . " = 2π / - We can see that from the additivity of the ...
... db exp ( i △ • b ) [ ** dze11V ( b , z ) exp xp ( − ¦ S'_ daV ( b , a ' ) ) / ďb 00 ** dz ' ∞ = 2 db exp ( i △ -b ) [ 1– exp ( − ¦ ƒ ̄ ̄ de V ( b , 2 ' ) ) ] ; A = k - k ' . " = 2π / - We can see that from the additivity of the ...
Page 6
... exp ( iEz + i △ b ) , we get 81 M ( k ' , k ) = m 2π » ) [ 1 - exp ( -ie [ ** dz V ( b , z ) ) ] . û ( k ' ) You ( k ) i ƒ db exp ( i △ · b ) | 1 — exp ( − ie 叶○ ū So , in this case we also have additivity of phase shifts ...
... exp ( iEz + i △ b ) , we get 81 M ( k ' , k ) = m 2π » ) [ 1 - exp ( -ie [ ** dz V ( b , z ) ) ] . û ( k ' ) You ( k ) i ƒ db exp ( i △ · b ) | 1 — exp ( − ie 叶○ ū So , in this case we also have additivity of phase shifts ...
Page 8
... db exp ( i △ -b ) [ 1— exp ( -ie [ ** [ ** dzV ( b , z ) + i 2 ) + i f ** i f ** dza ( b , 2 ) Xi , 81 00 where V ' ( r ) 0 , — i ( x — iy ) a ( b , z ) = K r i ( x + iy ) , 0 Note that since the z dependence is outside the spinor ...
... db exp ( i △ -b ) [ 1— exp ( -ie [ ** [ ** dzV ( b , z ) + i 2 ) + i f ** i f ** dza ( b , 2 ) Xi , 81 00 where V ' ( r ) 0 , — i ( x — iy ) a ( b , z ) = K r i ( x + iy ) , 0 Note that since the z dependence is outside the spinor ...
Common terms and phrases
absorption additivity of phase anomalous magnetic moment ú approximately assume attenuation beam Bureau of Standards coherent diffractive production collision Compton scattering compute Coulomb interactions Czyż d³r db bJo db exp i▲·b deuteron diagonalization diffractive production processes diffractive scattering discussed double scattering elastic scattering amplitude electromagnetic equation example excited experiments factor Feynman diagrams formula four-momentum Glauber model hadrons Hence high energy limit incident particle incident wave inelastic shadowing Interactions of High invariant mass K mesons multiple scattering National Bureau neutrino neutrons ññ Note nuclear matter nuclear targets nuclei nucleon obtained optical theorem parameters phase shifts photon photoproduction of vector physical pion production amplitude profiles quantum numbers regeneration Řº shadowing effects single scattering spin strongly interacting target nucleus total cross section vector meson VMD model wave function Απ γν ΦΩ