Interactions of High Energy Particles with NucleiNational Bureau of Standards, 1975 - 69 pages |
From inside the book
Results 1-5 of 22
Page 2
... db exp ( i △ · b ) { 1— exp [ ix ; ( b − s ; ) ] } , where k is the momentum of the incident particle in laboratory frame A is the two - dimensional momentum transfer b is the impact parameter x ; ( b ) is the phase shift which ...
... db exp ( i △ · b ) { 1— exp [ ix ; ( b − s ; ) ] } , where k is the momentum of the incident particle in laboratory frame A is the two - dimensional momentum transfer b is the impact parameter x ; ( b ) is the phase shift which ...
Page 3
... exp [ Σx ; ( b − j ; ) ] } ¥ , ( r1 . . . r △ ) ik = 27 db exp ( iA.b ) d [ dr ... ... d3rAY * 2π ادر where ; and Y , are the initial and final wave functions of the target nucleus . Yi , ( 2.1 ) One can produce many arguments which ...
... exp [ Σx ; ( b − j ; ) ] } ¥ , ( r1 . . . r △ ) ik = 27 db exp ( iA.b ) d [ dr ... ... d3rAY * 2π ادر where ; and Y , are the initial and final wave functions of the target nucleus . Yi , ( 2.1 ) One can produce many arguments which ...
Page 4
... exp exp ( − : S_dzV ( b , 2 ' ) ) d2b exp ( iA.b ) [ ** ik = 1 db exp ( ia - b ) [ 1- exp ( − ̄_dz'V ( b , 2 ' ) ) ] ,十三- A = k - k ' . 81 2π We can see that from the additivity of the potentials A V = Σ Vj , j = 1 we recover ...
... exp exp ( − : S_dzV ( b , 2 ' ) ) d2b exp ( iA.b ) [ ** ik = 1 db exp ( ia - b ) [ 1- exp ( − ̄_dz'V ( b , 2 ' ) ) ] ,十三- A = k - k ' . 81 2π We can see that from the additivity of the potentials A V = Σ Vj , j = 1 we recover ...
Page 6
... exp ( iEz + iA . b ) , we get m f · .00 z ) 91x ( k ' , k ) = " " , û ( k ' ) rou ( k ) i ƒ db exp ( i △ -b ) [ 1 - exp ( -ie [ * dz V ( b , 2 ) ) ] M f ** 81 2π ū . So , in this case we also have additivity of phase shifts - hence the ...
... exp ( iEz + iA . b ) , we get m f · .00 z ) 91x ( k ' , k ) = " " , û ( k ' ) rou ( k ) i ƒ db exp ( i △ -b ) [ 1 - exp ( -ie [ * dz V ( b , 2 ) ) ] M f ** 81 2π ū . So , in this case we also have additivity of phase shifts - hence the ...
Page 8
... db exp ( ia - b ) [ 1– exp ( -ie [ ** dz V ( b , z ) + i + if ** dza ( b , z ) > ) } } Xi , where 0 , -i ( x - iy ) V ' ( r ) a ( b , z ) = K r i ( x + iy ) , 0 Note that since the z dependence is outside the spinor matrix this does ...
... db exp ( ia - b ) [ 1– exp ( -ie [ ** dz V ( b , z ) + i + if ** dza ( b , z ) > ) } } Xi , where 0 , -i ( x - iy ) V ' ( r ) a ( b , z ) = K r i ( x + iy ) , 0 Note that since the z dependence is outside the spinor matrix this does ...
Common terms and phrases
absorption additivity analysis approximately assume attenuation beam coherent collision complete components compute consider contribution corrections Coulomb Coulomb interactions coupling cross section db exp db exp i▲·b depend describe deuteron diffractive production processes discussed effects elastic scattering elastic scattering amplitude equation example excited existence experimental experiments expression fact factor field final formula forward given gives Glauber ground hadrons Hence high energy limit important incident particle inelastic initial Institute interactions introduce magnetic mass measurement momentum transfer multiple scattering Note nuclear nuclear targets nuclei nucleon numbers objects obtained parameters phase shifts photon photoproduction physical position possible problem profiles regeneration shadowing single Standards step strong structure technical vector meson wave function weak