Page images
PDF
EPUB
[blocks in formation]

*Based on working sulfite-TCM solution concentration of 7.2 μg SO/mL; the actual total μg SO2 must be calculated using equation 11 below.

To each volumetric flask, add 1 mL 0.6% sulfamic acid (Section 8.2.1), accurately pipet 2 mL 0.2% formaldehyde solution (Section 8.2.2), then add 5 mL pararosaniline solution (Section 8.2.13). Start a laboratory timer that has been set for 30 minutes. Bring all flasks to volume with recently boiled and cooled distilled water and mix thoroughly. The color must be developed (during the 30minute period) in a temperature environment in the range of 20° to 30° C, which is controlled to ±1° C. For increased precision, a constant temperature bath is recommended during the color development step. After 30 minutes, determine the corrected absorbance of each standard at 548 nm against a distilled water reference (Section 10.1). Denote this absorbance as (A). Distilled water is used in the reference cell rather than the reagant blank because of the temperature sensitivity of the reagent blank. Calculate the total micrograms SO2 in each solution:

[blocks in formation]

VTCM/802-Volume of sulfite-TCM solution used, mL; CTCM/802-concentration of sulfur dioxide in the working sulfite-TCM, μg SOML (from equation 4); and

D=dilution factor (D=1 for the working sulfite-TCM solution; D=0.1 for the diluted working sulfite-TCM solution).

A calibration equation is determined using the method of linear least squares (Section 12.1). The total micrograms SO2 contained in each solution is the x variable, and the corrected absorbance (eq. 10) associated with each solution is the y variable. For the calibration to be valid, the slope must be in the range of 0.030 +0.002 absorbance unit/μg SO2, the intercept as determined by the least squares method must be equal to or less than 0.170 absorbance unit when the color is developed at 22° C (add 0.015 to this 0.170 specification for each °C above 22° C) and the correlation coefficient must be greater than 0.998. If these criteria are not met, it may be the result of an impure dye and/or an improperly standardized sulfite-TCM solution. A calibration factor (B) is determined by calculating

the reciprocal of the slope and is subsequently used for calculating the sample concentration (Section 12.3).

10.3 Dynamic Calibration Procedures (Option 2). Atmospheres containing accurately known concentrations of sulfur dioxide are prepared using permeation devices. In the systems for generating these atmospheres, the permeation device emits gaseous SO2 at a known, low, constant rate, provided the temperature of the device is held constant (10.1° C) and the device has been accurately calibrated at the temperature of use. The SO2 permeating from the device is carried by a low flow of dry carrier gas to a mixing chamber where it is diluted with SO-free air to the desired concentration and supplied to a vented manifold. A typical system is shown schematically in Figure 4 and this system and other similar systems have been described in detail by O'Keeffe and Ortman; (19) Scaringelli, Frey, and Saltzman, (20) and Scaringelli, O'Keeffe, Rosenberg, and Bell. (21) Permeation devices may be prepared or purchased and in both cases must be traceable either to a National Bureau of Standards (NBS) Standard Reference Material (SRM 1625, SRM 1626, SRM 1627) or to an NBS/EPA-approved commercially available Certified Reference Material (CRM). CRM's are described in Reference 22, and a list of CRM sources is available from the address shown for Reference 22. A recommended protocol for certifying a permeation device to an NBS SRM or CRM is given in Section 2.0.7 of Reference 2. Device permeation rates of 0.2 to 0.4 μg/min, inert gas flows of about 50 mL/ min, and dilution air flow rates from 1.1 to 15 L/min conveniently yield standard atmospheres in the range of 25 to 600 μg SO m3 (0.010 to 0.230 ppm).

10.3.1 Calibration Option 2A (30-minute and 1-hour samples): Generate a series of six standard atmospheres of SO2 (e.g., 0, 50, 100, 200, 350, 500, 750 μg/m3) by adjusting the dilution flow rates appropriately. The concentration of SO2 in each atmosphere is calculated as follows:

[blocks in formation]
[subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][merged small][subsumed][subsumed][subsumed][merged small][subsumed][merged small][graphic]

Be sure that the total flow rate of the standard exceeds the flow demand of the sample train, with the excess flow vented at atmospheric pressure. Sample each atmosphere using similar apparatus as shown in Figure 1 and under the same conditions as field sampling (i.e., use same absorbing reagent volume and sample same volume of air at an equivalent flow rate). Due to the length of the sampling periods required, this method is not recommended for 24-hour sampling. At the completion of sampling, quantitatively transfer the contents of each impinger to one of a series of 25-mL volumetric flasks (if 10 mL of absorbing solution was used) using small amounts of distilled water for rinse (<5mL). If >10 mL of absorbing solution was used, bring the absorber solution in each impinger to orginal volume with distilled H2O and pipet 10-mL portions from each impinger into a series of 25-mL volumetric flasks. If the color development steps are not to be started within 12 hours of sampling, store the solutions at 5° ± 5° C. Calculate the total micrograms SO2 in each solution as follows:

[merged small][ocr errors][merged small][merged small][ocr errors][subsumed][merged small]

V-volume of absorbing solution used for sampling (50 mL);

C-desired concentration of SO2 in the absorbing solution, μg/mL;

C.-concentration of the standard atmosphere calculated according to equation 12, μg/ m3; and

Q-sampling flow rate, std L/min.

At the completion of sampling, bring the absorber solutions to original volume with distilled water. Pipet a 10-mL portion from each absorber into one of a series of 25-mL volumetric flasks. If the color development steps are not to be started within 12 hours of sampling, store the solutions at 5° ± 5° C. Add the remaining reagents for color development in the same manner as in Section 10.2 for static solutions. Calculate the total μg SO2 in each standard as follows:

[ocr errors][merged small]
[merged small][ocr errors][ocr errors]

=

=

(13)

Vp

where:

where:

V

C.-concentration of SO2 in the standard at

mosphere, μg/m3;

O,-sampling flow rate, std L/min; t-sampling time, min;

V.=volume of absorbing solution used for color development (10 mL); and V1-volume of absorbing solution used for sampling, mL.

Add the remaining reagents for color development in the same manner as in Section 10.2 for static solutions. Calculate a calibration equation and a calibration factor (B2) according to Section 10.2, adhering to all the specified criteria.

10.3.2 Calibration Option 2B (24-hour samples): Generate a standard atmosphere containing approximately 1,050 μg SO/m3 and calculate the exact concentration according to equation 12. Set up a series of six absorbers according to Figure 2 and connect to a common manifold for sampling the standard atmosphere. Be sure that the total flow rate of the standard exceeds the flow demand at the sample manifold, with the excess flow vented at atmospheric pressure. The absorbers are then allowed to sample the atmosphere for varying time periods to yield solutions containing 0, 0.2, 0.6, 1.0, 1.4, 1.8, and 2.2 μg SO2/mL solution. The sampling times required to attain these solution concentrations are calculated as follows:

V1-volume of absorbing solution used for color development (10 mL).

All other parameters are defined in equation 14.

Calculate a calibration equation and a calibration factor (B) according to Section 10.2 adhering to all the specified criteria.

11.0 Sample Preparation and Analysis.

11.1 Sample Preparation. Remove the samples from the shipping container. If the shipment period exceeded 12 hours from the completion of sampling, verify that the temperature is below 10° C. Also, compare the solution level to the temporary level mark on the absorber. If either the temperature is above 10° C or there was significant loss (more than 10 mL) of the sample during shipping, make an appropriate notation in the record and invalidate the sample. Prepare the samples for analysis as follows:

1. For 30-minute or 1-hour samples: Quantitatively transfer the entire 10 mL amount of absorbing solution to a 25-mL volumetric flask and rinse with a small amount (<5 mL) of distilled water.

2. For 24-hour samples: If the volume of the sample is less than the original 50-mL volume (permanent mark on the absorber), adjust the volume back to the original volume with distilled water to compensate for water lost to evaporation during sampling. If the final volume is greater than the original volume, the volume must be measured using a graduated cylinder. To analyze, pipet 10 mL

of the solution into a 25-mL volumetric flask.

11.2 Sample Analysis. For each set of determinations, prepare a reagent blank by adding 10 mL TCM absorbing solution to a 25mL volumetric flask, and two control standards containing approximately 5 and 15 μg SO2, respectively. The control standards are prepared according to Section 10.2 or 10.3. The analysis is carried out as follows:

1. Allow the sample to stand 20 minutes after the completion of sampling to allow any ozone to decompose (if applicable).

2. To each 25-mL volumetric flask containing reagent blank, sample, or control standard, add 1 mL of 0.6% sulfamic acid (Section 8.2.1) and allow to react for 10 min.

3. Accurately pipet 2 mL of 0.2% formaldehyde solution (Section 8.2.2) and then 5 mL of pararosaniline solution (Section 8.2.13) into each flask. Start a laboratory timer set at 30 minutes.

4. Bring each flask to volume with recently boiled and cooled distilled water and mix thoroughly.

5. During the 30 minutes, the solutions must be in a temperature controlled environment in the range of 20° to 30° C maintained to 1° C. This temperature must also be within 1° C of that used during calibration.

6. After 30 minutes and before 60 minutes, determine the corrected absorbances (equation 10) of each solution at 548 nm using 1-cm optical path length cells against a distilled water reference (Section 10.1). (Distilled water is used as a reference instead of the reagent blank because of the sensitivity of the reagent blank to temperature.)

7. Do not allow the colored solution to stand in the cells because a film may be deposited. Clean the cells with isopropyl alcohol after use.

8. The reagent blank must be within 0.03 absorbance units of the intercept of the calibration equation determined in Section 10.

11.3 Absorbance range. If the absorbance of the sample solution ranges between 1.0 and 2.0, the sample can be diluted 1:1 with a portion of the reagent blank and the absorbance redetermined within 5 minutes. Solutions with higher absorbances can be diluted up to sixfold with the reagent blank in order to obtain scale readings of less than 1.0 absorbance unit. However, it is recommended that a smaller portion (<10 mL) of the original sample be reanalyzed (if possible) if the sample requires a dilution greater than 1:1.

11.4 Reagent disposal. All reagents containing mercury compounds must be stored and disposed of using one of the procedures contained in Section 13. Until disposal, the discarded solutions can be stored in closed glass containers and should be left in a fume hood.

12.0 Calculations.

12.1 Calibration Slope, Intercept, and Correlation Coefficient. The method of least

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][ocr errors][merged small][merged small][ocr errors][merged small][merged small][merged small]

A corrected absorbance of the sample solution, from equation (10);

A-corrected absorbance of the reagent blank, using equation (10);

B, calibration factor equal to B,, B,, or B depending on the calibration procedure used, the reciprocal of the slope of the calibration equation;

V.=volume of absorber solution analyzed, mL;

V-total volume of solution in absorber (see 11.1-2), mL; and

Vid-standard air volume sampled, std L (from Section 12.2).

[ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][ocr errors][merged small][merged small][ocr errors][merged small][merged small][merged small][ocr errors][merged small][merged small]

Ca-analyzed μg SO2 in each control standard, A corrected absorbance of the control standard, and

A。-corrected absorbance of the reagent blank.

The difference between the true and analyzed values of the control standards must not be greater than 1 μg. If the difference is greater than 1 μg, the source of the discrepancy must be identified and corrected.

12.5 Conversion of μg/m3 to ppm (v/v). If desired, the concentration of sulfur dioxide at reference conditions can be converted to ppm SO2 (v/v) as follows:

[ocr errors][merged small][merged small][merged small][merged small][merged small]

13.0 The TCM absorbing solution and any reagents containing mercury compounds must be treated and disposed of by one of the methods discussed below. Both methods remove greater than 99.99 percent of the mercury.

13.1 Disposal of Mercury-Containing Solutions.

13.2 Method for Forming an Amalgam.

1. Place the waste solution in an uncapped vessel in a hood.

2. For each liter of waste solution, add approximately 10 g of sodium carbonate until neutralization has occurred (NaOH may have to be used).

3. Following neutralization, add 10 g of granular zinc or magnesium.

4. Stir the solution in a hood for 24 hours. Caution must be exercised as hydrogen gas is evolved by this treatment process.

5. After 24 hours, allow the solution to stand without stirring to allow the mercury

amalgam (solid black material) to settle to the bottom of the waste receptacle.

6. Upon settling, decant and discard the supernatant liquid.

7. Quantitatively transfer the solid material to a container and allow to dry.

8. The solid material can be sent to a mercury reclaiming plant. It must not be discarded.

13.3 Method Using Aluminum Foil Strips.

1. Place the waste solution in an uncapped vessel in a hood.

2. For each liter of waste solution, add approximately 10 g of aluminum foil strips. If all the aluminum is consumed and no gas is evolved, add an additional 10 g of foil. Repeat until the foil is no longer consumed and allow the gas to evolve for 24 hours.

3. Decant the supernatant liquid and discard.

4. Transfer the elemental mercury that has settled to the bottom of the vessel to a storage container.

5. The mercury can be sent to a mercury reclaiming plant. It must not be discarded. 14.0 References for SO2 Method.

1. Quality Assurance Handbook for Air Pollution Measurement Systems, Volume I, Principles. EPA-600/9-76-005, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, 1976.

2. Quality Assurance Handbook for Air Pollution Measurement Systems, Volume II, Ambient Air Specific Methods. EPA-600/4-77027a, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, 1977.

3. Dasqupta, P. K., and K. B. DeCesare. Stability of Sulfur Dioxide in Formaldehyde and Its Anomalous Behavior in Tetrachloromercurate (II). Submitted for publication in Atmospheric Environment, 1982. 4. West, P. W., and G. C. Gaeke. Fixation of Sulfur Dioxide as Disulfitomercurate (II) and Subsequent Colorimetric Estimation. Anal. Chem., 28:1816, 1956.

5. Ephraim, F. Inorganic Chemistry. P. C. L. Thorne and E. R. Roberts, Eds., 5th Edition, Interscience, 1948, p. 562.

6. Lyles, G. R., F. B. Dowling, and V. J. Blanchard. Quantitative Determination of Formaldehyde in the Parts Per Hundred Million Concentration Level. J. Air. Poll. Cont. Assoc., Vol. 15(106), 1965.

7. McKee, H. C., R. E. Childers, and O. Saenz, Jr. Collaborative Study of Reference Method for Determination of Sulfur Dioxide in the Atmosphere (Pararosaniline Method). EPA-APTD-0903, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, September 1971.

8. Urone, P., J. B. Evans, and C. M. Noyes. Tracer Techniques in Sulfur-Air Pollution Studies Apparatus and Studies of Sulfur Dioxide Colorimetric and Conductometric Methods. Anal. Chem., 37: 1104, 1965.

9. Bostrom, C. E. The Absorption of Sulfur Dioxide at Low Concentrations (pphm) Stud

« PreviousContinue »