NIST Special Publication |
What people are saying - Write a review
We haven't found any reviews in the usual places.
Other editions - View all
Common terms and phrases
Activation Analysis applications atoms beam Brown Center for Neutron Characterization Chem Chemical coating cold neutron complex component Copolymers Crystal Crystal Structure D. A. Neumann 105 dependence depth Design detector Determination Development Diffraction direction disordered distribution Dynamics Effects energy Erwin experiments facility field FIGURE function Huang Hydrogen images indicate Institute of Standards intensity interactions J. W. Lynn Laboratory lattice lithium Macromol Magnetic Magnetic Order Materials measurements Molecular molecules nanotubes National Institute NCNR Neutron Research Neutron Scattering NIST NIST Center observed obtained operating Ordering peak phase Phys Physics Polarized Polymer pressure properties protein ratio reactor Reference Reflectivity Research resolution sample SANS Science shown shows Small solid Solution Spectrometer Spin Standards and Technology Structure Study surface technique temperature thermal Thin Films transition unit University X-ray Yildirim
Popular passages
Page 18 - ... nanoropes"[10]. The intertube interactions in nanoropes can be probed by applying external pressure to vary the intertube distance. For fullerenes, such high-pressure studies have yielded many interesting results including new compounds such as the pressure-induced polymeric phases of C«>- It is, therefore, of interest to inquire if similar covalent-bonding can occur between the nanotubes in a rope. This could have important consequences for nanoscale device applications and composite materials...
Page 19 - The new pressure-induced, high density phasesflO] reported here may provide a way of synthesizing novel carbon base materials with interesting physical properties. For example interlinking of the nanotubes may improve the mechanical performance of composites based on these materials. The change in the band gap of a SWNT with applied pressure can be exploited to realize various quantum devices on a single nanotube with variable and reversible electronic properties [10]. Finally we note that...
Page 19 - ... Fig.3(a)). This two dimensional interlinked structure is about four times stiffer than the ID interlinked phase and sixteen times stiffer than the vdW nanoropes. We observe that applying even higher pressures yields more complicated and denser phases for many of the nanoropes studied here (see Fig.3). For (9,0) nanoropes, we find that the nanotubes are interlinked along three directions forming a hexagonal network. The length of the intertube bond, dC-c= 1.644 A, is significantly elongated for...
Page 29 - NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD...
Page 9 - Laboratory for Research on the Structure of Matter and Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA...
Page 39 - Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899.
Page 19 - T. Yildirim, O. Gulseren, C. Kilic, and S. Ciraci, Phys. Rev. B 62, 12648 (2000).
Page 18 - Carbon nanotubes, originally discovered as by products of fullerene synthesis [1], are now considered to be the building blocks of future nanoscale electronic and mechanical devices [2]. It is therefore desirable to have a good understanding of their electronic and mechanical properties and the interrelations between them. In particular, single wall carbon nanotubes (SWNT) provide a system where the electronic properties can be controlled by the structure of the nanotubes and by various deformations...