Page images
PDF
EPUB
[merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

The Morbidity and Mortality Weekly Report is prepared by the Centers for Disease Control, Atlanta, Georgia, and available on a paid subscription basis from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402, (202) 783-3238.

The data in this report are provisional, based on weekly reports to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the succeeding Friday. The editor welcomes accounts of interesting cases, outbreaks, environmental hazards, or other public health problems of current interest to health officials. Such reports and any other matters pertaining to editorial or other textual considerations should be addressed to: Editor, Morbidity and Mortality Weekly Report, Centers for Disease Control, Atlanta, Georgia 30333.

[blocks in formation]

CENTERS FOR DISEASE CONTROL

UBLIC HEALTH

RA

A157

MWR

137 No.24 ITY AND MORTALITY WEEKLY REPORT

[blocks in formation]

June 24, 1988 / Vol. 37 / No. 24
377 Update: Universal Precautions for
Prevention of Transmission of Human
Immunodeficiency Virus, Hepatitis B
Virus, and Other Bloodborne
Pathogens in Health-Care Settings
388 Rocky Mountain Spotted Fever
United States, 1987

390 Heat-Wave-Related Morbidity and
Mortality

[graphic]

rerspectives in Disease Prevention and Health Promotion

The University

of Michigan

Public Health
Library

Update: Universal Precautions for Prevention of Transmission of Human
Immunodeficiency Virus, Hepatitis B Virus, and Other Bloodborne
Pathogens in Health-Care Settings

Introduction

The purpose of this report is to clarify and supplement the CDC publication entitled "Recommendations for Prevention of HIV Transmission in Health-Care Settings"

(1).*

In 1983, CDC published a document entitled "Guideline for Isolation Precautions in Hospitals" (2) that contained a section entitled "Blood and Body Fluid Precautions." The recommendations in this section called for blood and body fluid precautions when a patient was known or suspected to be infected with bloodborne pathogens. In August 1987, CDC published a document entitled "Recommendations for Prevention of HIV Transmission in Health-Care Settings" (1). In contrast to the 1983 document, the 1987 document recommended that blood and body fluid precautions be consistently used for all patients regardless of their bloodborne infection status. This extension of blood and body fluid precautions to all patients is referred to as "Universal Blood and Body Fluid Precautions" or "Universal Precautions." Under universal precautions, blood and certain body fluids of all patients are considered potentially infectious for human immunodeficiency virus (HIV), hepatitis B virus (HBV), and other bloodborne pathogens.

*The August 1987 publication should be consulted for general information and specific recommendations not addressed in this update.

Copies of this report and of the MMWR supplement entitled Recommendations for
Prevention of HIV Transmission in Health-Care Settings published in August 1987 are
available through the National AIDS Information Clearinghouse, P.O. Box 6003, Rockville,
MD 20850.

D

U.S. DEPARTMENT OF HEALTH AND RUMAN SERVICES/PUBLIC HEALTH SERVICE

PUBLIC HEALTH LIBRARY

U.S. DEPOSITORY JUL 19 1988

Update: HIV - Continued

Universal precautions are intended to prevent parenteral, mucous membrane, and nonintact skin exposures of health-care workers to bloodborne pathogens. In addition, immunization with HBV vaccine is recommended as an important adjunct to universal precautions for health-care workers who have exposures to blood (3,4).

Since the recommendations for universal precautions were published in August 1987, CDC and the Food and Drug Administration (FDA) have received requests for clarification of the following issues: 1) body fluids to which universal precautions apply, 2) use of protective barriers, 3) use of gloves for phlebotomy, 4) selection of gloves for use while observing universal precautions, and 5) need for making changes in waste management programs as a result of adopting universal precautions. Body Fluids to Which Universal Precautions Apply

Universal precautions apply to blood and to other body fluids containing visible blood. Occupational transmission of HIV and HBV to health-care workers by blood is documented (4,5). Blood is the single most important source of HIV, HBV, and other bloodborne pathogens in the occupational setting. Infection control efforts for HIV, HBV, and other bloodborne pathogens must focus on preventing exposures to blood as well as on delivery of HBV immunization.

Universal precautions also apply to semen and vaginal secretions. Although both of these fluids have been implicated in the sexual transmission of HIV and HBV, they have not been implicated in occupational transmission from patient to health-care worker. This observation is not unexpected, since exposure to semen in the usual health-care setting is limited, and the routine practice of wearing gloves for performing vaginal examinations protects health-care workers from exposure to potentially infectious vaginal secretions.

Universal precautions also apply to tissues and to the following fluids: cerebrospinal fluid (CSF), synovial fluid, pleural fluid, peritoneal fluid, pericardial fluid, and amniotic fluid. The risk of transmission of HIV and HBV from these fluids is unknown; epidemiologic studies in the health-care and community setting are currently inadequate to assess the potential risk to health-care workers from occupational exposures to them. However, HIV has been isolated from CSF, synovial, and amniotic fluid (6-8), and HBsAg has been detected in synovial fluid, amniotic fluid, and peritoneal fluid (9-11). One case of HIV transmission was reported after a percutaneous exposure to bloody pleural fluid obtained by needle aspiration (12). Whereas aseptic procedures used to obtain these fluids for diagnostic or therapeutic purposes protect health-care workers from skin exposures, they cannot prevent penetrating injuries due to contaminated needles or other sharp instruments.

Body Fluids to Which Universal Precautions Do Not Apply

Universal precautions do not apply to feces, nasal secretions, sputum, sweat, tears, urine, and vomitus unless they contain visible blood. The risk of transmission of HIV and HBV from these fluids and materials is extremely low or nonexistent. HIV has been isolated and HBsAg has been demonstrated in some of these fluids; however, epidemiologic studies in the health-care and community setting have not implicated these fluids or materials in the transmission of HIV and HBV infections (13,14). Some of the above fluids and excretions represent a potential source for nosocomial and community-acquired infections with other pathogens, and recommendations for preventing the transmission of nonbloodborne pathogens have been published (2).

Update: HIV - Continued

Precautions for Other Body Fluids in Special Settings

Human breast milk has been implicated in perinatal transmission of HIV, and HBsAg has been found in the milk of mothers infected with HBV (10,13). However, occupational exposure to human breast milk has not been implicated in the transmission of HIV nor HBV infection to health-care workers. Moreover, the health-care worker will not have the same type of intensive exposure to breast milk as the nursing neonate. Whereas universal precautions do not apply to human breast milk, gloves may be worn by health-care workers in situations where exposures to breast milk might be frequent, for example, in breast milk banking.

Saliva of some persons infected with HBV has been shown to contain HBV-DNA at concentrations 1/1,000 to 1/10,000 of that found in the infected person's serum (15). HBsAg-positive saliva has been shown to be infectious when injected into experimental animals and in human bite exposures (16-18). However, HBsAg-positive saliva has not been shown to be infectious when applied to oral mucous membranes in experimental primate studies (18) or through contamination of musical instruments or cardiopulmonary resuscitation dummies used by HBV carriers (19,20). Epidemiologic studies of nonsexual household contacts of HIV-infected patients, including several small series in which HIV transmission failed to occur after bites or after percutaneous inoculation or contamination of cuts and open wounds with saliva from HIV-infected patients, suggest that the potential for salivary transmission of HIV is remote (5,13,14,21,22). One case report from Germany has suggested the possibility of transmission of HIV in a household setting from an infected child to a sibling through a human bite (23). The bite did not break the skin or result in bleeding. Since the date of seroconversion to HIV was not known for either child in this case, evidence for the role of saliva in the transmission of virus is unclear (23). Another case report suggested the possibility of transmission of HIV from husband to wife by contact with saliva during kissing (24). However, follow-up studies did not confirm HIV infection in the wife (21).

Universal precautions do not apply to saliva. General infection control practices already in existence - including the use of gloves for digital examination of mucous membranes and endotracheal suctioning, and handwashing after exposure to saliva - should further minimize the minute risk, if any, for salivary transmission of HIV and HBV (1,25). Gloves need not be worn when feeding patients and when wiping saliva from skin.

Special precautions, however, are recommended for dentistry (1). Occupationally acquired infection with HBV in dental workers has been documented (4), and two possible cases of occupationally acquired HIV infection involving dentists have been reported (5,26). During dental procedures, contamination of saliva with blood is predictable, trauma to health-care workers' hands is common, and blood spattering may occur. Infection control precautions for dentistry minimize the potential for nonintact skin and mucous membrane contact of dental health-care workers to blood-contaminated saliva of patients. In addition, the use of gloves for oral examinations and treatment in the dental setting may also protect the patient's oral mucous membranes from exposures to blood, which may occur from breaks in the skin of dental workers' hands.

Use of Protective Barriers

Protective barriers reduce the risk of exposure of the health-care worker's skin or mucous membranes to potentially infective materials. For universal precautions,

Update: HIV - Continued

protective barriers reduce the risk of exposure to blood, body fluids containing visible blood, and other fluids to which universal precautions apply. Examples of protective barriers include gloves, gowns, masks, and protective eyewear. Gloves should reduce the incidence of contamination of hands, but they cannot prevent penetrating injuries due to needles or other sharp instruments. Masks and protective eyewear or face shields should reduce the incidence of contamination of mucous membranes of the mouth, nose, and eyes.

Universal precautions are intended to supplement rather than replace recommendations for routine infection control, such as handwashing and using gloves to prevent gross microbial contamination of hands (27). Because specifying the types of barriers needed for every possible clinical situation is impractical, some judgment must be exercised.

The risk of nosocomial transmission of HIV, HBV, and other bloodborne pathogens can be minimized if health-care workers use the following general guidelines:* 1. Take care to prevent injuries when using needles, scalpels, and other sharp instruments or devices; when handling sharp instruments after procedures; when cleaning used instruments; and when disposing of used needles. Do not recap used needles by hand; do not remove used needles from disposable syringes by hand; and do not bend, break, or otherwise manipulate used needles by hand. Place used disposable syringes and needles, scalpel blades, and other sharp items in puncture-resistant containers for disposal. Locate the puncture-resistant containers as close to the use area as is practical.

2. Use protective barriers to prevent exposure to blood, body fluids containing visible blood, and other fluids to which universal precautions apply. The type of protective barrier(s) should be appropriate for the procedure being performed and the type of exposure anticipated.

3. Immediately and thoroughly wash hands and other skin surfaces that are contaminated with blood, body fluids containing visible blood, or other body fluids to which universal precautions apply.

Glove Use for Phlebotomy

Gloves should reduce the incidence of blood contamination of hands during phlebotomy (drawing blood samples), but they cannot prevent penetrating injuries caused by needles or other sharp instruments. The likelihood of hand contamination with blood containing HIV, HBV, or other bloodborne pathogens during phlebotomy depends on several factors: 1) the skill and technique of the health-care worker, 2) the frequency with which the health-care worker performs the procedure (other factors being equal, the cumulative risk of blood exposure is higher for a health-care worker who performs more procedures), 3) whether the procedure occurs in a routine or emergency situation (where blood contact may be more likely), and 4) the prevalence of infection with bloodborne pathogens in the patient population. The likelihood of infection after skin exposure to blood containing HIV or HBV will depend on the concentration of virus (viral concentration is much higher for hepatitis B than for HIV), the duration of contact, the presence of skin lesions on the hands of the health-care worker, and for HBV the immune status of the health-care worker. Although not accurately quantified, the risk of HIV infection following intact skin contact with infective blood is certainly much less than the 0.5% risk following percutaneous *The August 1987 publication should be consulted for general information and specific recommendations not addressed in this update.

« PreviousContinue »